Differential activation of heat-shock and oxidation-specific stress genes in chemically induced oxidative stress

Author:

Tacchini L1,Pogliaghi G1,Radice L1,Anzon E1,Bernelli-Zazzera A1

Affiliation:

1. Istituto di Patologia Generale dell′Università degli Studi di Milano, Centro di Studio sulla Patologia Cellulare del CNR, Via Mangiagalli 31, 20133 Milano, Italy

Abstract

Post-ischaemic reperfusion increases the level of the major heat-shock (stress) protein hsp 70 and of its mRNA by transcriptional mechanisms, and activates the binding of the heat-shock factor HSF to the consensus sequence HSE. In common with CoCl2 treatment, post-ischaemic reperfusion increases the level of haem oxygenase mRNA, an indicator of oxidative stress, but CoCl2 does not seem to induce the expression of the hsp 70 gene [Tacchini, Schiaffonati, Pappalardo, Gatti and Bernelli-Zazzera (1993) Lab. Invest. 68, 465-471]. Starting from these observations, we have now studied the expression of two genes of the hsp 70 family and of other possibly related genes under conditions of oxidative stress. Three different chemicals, which cause oxidative stress by various mechanisms and induce haem oxygenase, enhance the expression of the cognate hsc 73 gene, but do not activate the inducible hsp 70 gene. Expression of the other genes that have been studied seems to vary in intensity and/or time course, in relation to the particular mechanism of action of any single agent. The pattern of induction of the early-immediate response genes c-fos and c-jun observed during oxidative stress differs from that found in post-ischaemic reperfused livers. Oxidative-stress-inducing agents do not promote the binding of HSF to its consensus sequence HSE, such as occurs in heat-shock and post-ischaemic reperfusion, and fail to activate AP-1 (activator protein 1). With the possible exception of Phorone, the oxidative stress chemically induced in rat liver activates NFkB (nuclear factor kB) and AP-2 (activator protein 2) transcription factors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3