Increased Oxidative Stress in Rat Liver and Pancreas during Progression of Streptozotocin-Induced Diabetes

Author:

Kakkar Rakesh1,Mantha Subrahmanyam V.1,Radhi Jasim1,Prasad Kailash2,Kalra Jawahar1

Affiliation:

1. Department of Pathology, College of Medicine, University of Saskatchewan and Royal University Hospital, Saskatoon, Soskatchewon, S7N 0VV8, Canada

2. Department of Physiology, College of Medicine, University of Saskatchewan and Royal University Hospital, Saskatoon, Saskatchewan, S7N 0W8, Canada

Abstract

1. Oxygen free radicals have been suggested to be a contributory factor in complications of diabetes mellitus. There are many reports indicating the changes in parameters of oxidative stress in diabetes mellitus. In this study we aimed to identify whether oxidative stress occurs in the liver and pancreas in the initial stages of development of diabetes. 2. We therefore investigated the lipid peroxide level (thiobarbituric acid-reactive substances, TBARS) and activities of antioxidant enzymes [superoxide dismutase (SOD), catalase and glutathione peroxidase] in liver and pancreas of control and streptozotocin-induced diabetic rats at various stages of development of diabetes. 3. Male Sprague—Dawley rats were divided into two groups: group I, control (n = 42) and group II, diabetic (n = 42). Each group was further subdivided into seven groups consisting of six rats each. Rats in these subgroups were studied at weekly intervals (0 to 6 weeks). Plasma glucose levels, TBARS levels and activities of antioxidant enzymes were measured in liver and pancreas at various time intervals. 4. There was a significant (P < 0.05) and progressive increase in TBARS levels of liver and pancreas in the diabetic group. Total SOD and Cu—Zn-SOD activity increased (P < 0.05) with progression of diabetes while Mn-SOD activity showed no significant change in either tissue. Catalase and glutathione peroxidase activities increased significantly (P < 0.05) in liver and pancreas. 5. Immunohistochemical study of pancreatic islet revealed a decrease in the expression of insulin with progression of diabetes. However, glucagon and somatostatin showed an increase in immunoreactivity and a difference in their distribution pattern. 6. The findings of the present study suggest that oxidative stress starts at early onset of diabetes mellitus and increases progressively. In conclusion, the structural damage to these tissues or complications of diabetes mellitus may be due to oxidative stress.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3