Properties and reaction with iodoacetamide of adenosine 5′-triphosphate–creatinine phosphotransferase from human skeletal muscle. Further evidence about the role of the essential thiol group in relation to the mechanism of action

Author:

Kumudavalli I.1,Moreland B. H.1,Watts D. C.1

Affiliation:

1. Department of Biochemistry, Guy's Hospital Medical School, London S.E.1, U.K.

Abstract

1. The purification of creatine kinase from human and monkey skeletal muscle by horizontal electrophoresis on Sephadex blocks is described. 2. The purified enzymes are shown to have similar chemical and kinetic properties to the rabbit muscle enzyme and a common mechanism is inferred. 3. Iodoacetamide has a similar apparent second-order inhibition constant with the human and rabbit enzymes, but the inhibition does not go to completion with the former. This is even more marked with the monkey enzyme, which has more reactive thiol groups, but inhibition is only about 50%. 4. Single substrates have little effect on the inhibition by iodoacetamide, but with the primate enzymes, in contrast with the rabbit enzyme, high concentrations of ADP–Mg2+ plus creatine convert the essential thiol group from being pH-independent into one with a normal ionization. Low concentrations of ADP–Mg2+ plus creatine first enhance the rate of inactivation, but cause protection as the reaction proceeds. These results are interpreted to indicate an activation of the thiol group on the subunit to which the substrates bind and a co-operatively induced decrease in the activity of the thiol group on the other subunit which lacks substrates. 5. The effects of a substrate equilibrium mixture on the rate of inhibition are essentially those of ADP–Mg2+ plus creatine. 6. Since no substrate combination affords significant protection to the thiol group associated with the catalytic site to which the substrates are bound, it is concluded that any mechanism involving the thiol group in a direct participation in the transition-state complex of the catalytic reaction must be abandoned unless the transition state is only a small part of the time taken for one catalytic cycle.

Publisher

Portland Press Ltd.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical basis of cysteine reactivity and specificity: Acidity and nucleophilicity;Redox Chemistry and Biology of Thiols;2022

2. SEURAT-1 liver gold reference compounds: a mechanism-based review;Archives of Toxicology;2014-11-14

3. MOLAR ABSORPTIVITY AND A VALUES FOR PROTEINS AT SELECTED WAVELENGTHS OF THE ULTRAVIOLET AND VISIBLE REGION. IV *;International Journal of Protein Research;2009-01-09

4. Conformational Adaptability in Enzymes;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

5. Relating Structure to Mechanism in Creatine Kinase;Critical Reviews in Biochemistry and Molecular Biology;2005-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3