Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria

Author:

Møller I M,Kay C J,Palmer J M

Abstract

The oxidation of NADH or succinate by Jerusalem-artichoke (Helianthus tuberosus L.) mitochondria in the presence of chlortetracycline induced an increase in chlortetracycline fluorescence. Any treatment that prevented the formation of a transmembrane potential (as monitored by changes in safranine absorbance, A511-A533), e.g. uncoupling with carbonyl cyanide p-trifluoromethoxyphenylhydrazone, inhibition of dehydrogenase activity or electron transport, anaerobiosis or depletion of substrate, prevented the increase in chlortetracycline fluorescence or caused it to disappear. Changes in chlortetracycline fluorescence were always slower than changes in the safranine absorbance. The increase in chlortetracycline fluorescence caused by succinate oxidation had an excitation maximum at 393 nm, indicating that a Ca2+-chlortetracycline complex was involved. The increase in fluorescence was observed even in the presence of EDTA, which removes all external bivalent cations, indicating that internal Ca2+ is mobilized. Although NADH and succinate oxidations gave the same membrane potential and qualitatively had the same effect on chlortetracycline fluorescence, NADH oxidation caused a much larger (over 3-fold) increase in chlortetracycline fluorescence than did succinate oxidation. It is possible that this is connected with the Ca2+-dependence of NADH oxidation. In the presence of 2 mM external Ca2+, chlortetracycline collapsed the transmembrane potential and uncoupled succinate and duroquinone oxidation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3