Copper inhibits β-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion

Author:

BORCHARDT Thilo1,CAMAKARIS James2,CAPPAI Roberto3,MASTERS Colin L.3,BEYREUTHER Konrad1,MULTHAUP Gerd1

Affiliation:

1. ZMBH-Center for Molecular Biology Heidelberg, University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany

2. Department of Genetics, University of Melbourne, Parkville, Victoria, 3052, Australia

3. Department of Pathology, University of Melbourne, Parkville, Victoria, 3052, Australia, and The Neuropathology Laboratory of the Mental Health Research Institute of Victoria, Parkville, Victoria, 3052, Australia

Abstract

Previous studies have demonstrated that amyloid precursor protein (APP) can bind and reduce Cu(II) to Cu(I), leading to oxidative modification of APP. In the present study we show that adding copper to Chinese-hamster ovary (CHO) cells greatly reduced the levels of amyloid Aβ peptide (Aβ) both in parental CHO-K1 and in copper-resistant CHO-CUR3 cells, which have lower intracellular copper levels. Copper also caused an increase in the secretion of the APP ectodomain, indicating that the large decrease in Aβ release was not due to a general inhibition in protein secretion. There was an increase in intracellular full-length APP levels which paralleled the decrease in Aβ generation, suggesting the existence of two distinct regulating mechanisms, one acting on Aβ production and the other on APP synthesis. Maximal inhibition of Aβ production and stimulation of APP secretion was achieved in CHO-K1 cells at about 10 μM copper and in CHO-CUR3 cells at about 50 μM copper. This dose ‘window of opportunity’ at which copper promoted the non-amyloidogenic pathway of APP was confirmed by an increase in the non-amyloidogenic p3 fragment produced by α-secretase cleavage. Our findings suggest that copper or copper agonists might be useful tools to discover novel targets for anti-Alzheimer drugs and may prove beneficial for the prevention of Alzheimer's disease.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3