Secondary structure of caveolins: a mini review

Author:

Root Kyle T.1,Julien Jeffrey A.2,Glover Kerney Jebrell2ORCID

Affiliation:

1. Department of Chemistry, Lock Haven University, 301 E. Church Street, Lock Haven, PA 17745, U.S.A.

2. Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, PA 18015, U.S.A.

Abstract

Abstract Caveolae are 50–100 nm invaginations found within the plasma membrane of cells. Caveolae are involved in many processes that are essential for homeostasis, most notably endocytosis, mechano-protection, and signal transduction. Within these invaginations, the most important proteins are caveolins, which in addition to participating in the aforementioned processes are structural proteins responsible for caveolae biogenesis. When caveolin is misregulated or mutated, many disease states can arise which include muscular dystrophy, cancers, and heart disease. Unlike most integral membrane proteins, caveolin does not have a transmembrane orientation; instead, it is postulated to adopt an unusual topography where both the N- and C-termini lie on the cytoplasmic side of the membrane, and the hydrophobic span adopts an intramembrane loop conformation. While knowledge concerning the biology of caveolin has progressed apace, fundamental structural information has proven more difficult to obtain. In this mini-review, we curate as well as critically assess the structural data that have been obtained on caveolins to date in order to build a robust and compelling model of the caveolin secondary structure.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3