Lessons from cavin-1 deficiency

Author:

Liu Libin1ORCID

Affiliation:

1. Department of Pharmacology & Experimental Therapeutics, Boston University, School of Medicine, Boston, MA 02118, U.S.A.

Abstract

Caveolae have been implicated in a wide range of critical physiological functions. In the past decade, the dominant role of cavin-1 in caveolae formation has been established, and it has been recognized as another master regulator for caveolae biology. Human patients with cavin-1 mutations develop lipodystrophy and muscular dystrophy and have some major pathological dysfunctions in fat tissue, skeleton muscle, heart, lung and other organs. Cavin-1 deficiency animal models consistently show similar phenotypes. However, the underlying molecular mechanisms remain to be elucidated. Recent studies have suggested many possible pathways, including mechanosensing, stress response, signal transduction, exosome secretion, and potential functions in the nucleus. Many excellent and comprehensive review articles already exist on the topics of caveolae structure formation, caveolins, and their pathophysiological functions. We will focus on recent studies using cavin-1 deficiency models, to summarize the pathophysiological changes in adipose, muscle, and other organs, followed by a summary of mechanistic studies about the roles of cavin-1, which includes caveolae formation, ribosomal RNA transcription, mechanical sensing, stress response, and exosome secretion. Further studies may help to elucidate the exact underlying molecular mechanism to explain the pathological changes observed in cavin-1 deficient human patients and animal models, so potential new therapeutic strategies can be developed.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3