Affiliation:
1. Department of Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K.
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献