Lessons on autoimmune diabetes from animal models

Author:

Yang Yang12,Santamaria Pere32

Affiliation:

1. Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1

2. Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1

3. Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1

Abstract

T1DM (Type I diabetes mellitus) results from selective destruction of the insulin-producing β-cells of the pancreas by the immune system, and is characterized by hyperglycaemia and vascular complications arising from suboptimal control of blood glucose levels. The discovery of animal models of T1DM in the late 1970s and early 1980s, particularly the NOD (non-obese diabetic) mouse and the BB (BioBreeding) diabetes-prone rat, had a fundamental impact on our ability to understand the genetics, aetiology and pathogenesis of this disease. NOD and BB diabetes-prone rats spontaneously develop a form of diabetes that closely resembles the human counterpart. Early studies of these animals quickly led to the realization that T1DM is caused by autoreactive T-lymphocytes and revealed that the development of T1DM is controlled by numerous polymorphic genetic elements that are scattered throughout the genome. The development of transgenic and gene-targeting technologies during the 1980s allowed the generation of models of T1DM of reduced genetic and pathogenic complexity, and a more detailed understanding of the immunogenetics of T1DM. In this review, we summarize the contribution of studies in animal models of T1DM to our current understanding of four fundamental aspects of T1DM: (i) the nature of genetic elements affording T1DM susceptibility or resistance; (ii) the mechanisms underlying the development and recruitment of pathogenic autoreactive T-cells; (iii) the identity of islet antigens that contribute to the initiation and/or progression of islet inflammation and β-cell destruction; and (iv) the design of avenues for therapeutic intervention that are rooted in the knowledge gained from studies of animal models. Development of new animal models will ensure continued progress in these four areas.

Publisher

Portland Press Ltd.

Subject

General Medicine

Reference158 articles.

1. Type 1 diabetes: molecular, cellular and clinical immunology;Eisenbarth;Adv. Exp. Med. Biol.,2004

2. The stages of type 1A diabetes: 2005;Gianani;Immunol. Rev.,2005

3. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models;Todd;Immunity,2001

4. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease;Ueda;Nature (London),2003

5. Dissecting autoimmune diabetes through genetic manipulation of non-obese diabetic mice;Yang;Diabetologia,2003

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3