A mitochondrial membrane protein is required for translocation of phosphatidylserine from mitochondria-associated membranes to mitochondria

Author:

SHIAO Young-Ji1,BALCERZAK Bénédicte1,VANCE Jean E.1

Affiliation:

1. Lipid and Lipoprotein Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2S2

Abstract

The mechanism of import of phosphatidylserine (PtdSer) into mitochondria was investigated using a reconstituted system of isolated organelles in vitroin which PtdSer was translocated from donor membranes to mitochondria and was decarboxylated therein. Neither phosphatidylcholine nor phosphatidylethanolamine (PtdEtn) was translocated under the same conditions. Transfer of PtdSer from its site of synthesis on the endoplasmic reticulum and mitochondria-associated membranes [J. E. Vance (1990) J. Biol. Chem. 265, 7248–7256] to its site of decarboxylation on mitochondrial inner membranes is predicted to be mediated by membrane contact. A mitochondrial membrane protein appears to be involved in the translocation event since proteolysis of proteins exposed on the mitochondrial surface potently inhibited PtdSer transfer, whereas proteolysis of surface proteins of mitochondria-associated membranes did not impair the transfer. The nature of the membranes that donate PtdSer to mitochondria in vitrois not crucial since PtdSer of mitochondria-associated membranes, endoplasmic reticulum and microsomes was decarboxylated to PtdEtn with approximately equal efficiency. The translocation of PtdSer to mitochondria was stimulated by magnesium and calcium ions and was inhibited by incubation of mitochondria with sulphydryl group-modifying reagents. Reconstitution of PtdSer translocation/decarboxylation using digitonin-solubilized mitochondria and PtdSer-donor membranes suggested that the putative PtdSer-translocation protein is primarily localized to contract sites between mitochondrial inner and outer membranes. These studies provide evidence for the involvement of a mitochondrial membrane protein in the import of newly-synthesized PtdSer into mitochondria.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3