Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin-43 in WB cells: possible involvement of the mitogen-activated protein kinase cascade

Author:

Hill C S T1,Oh S Y1,Schmidt S A1,Clark K J1,Murray A W1

Affiliation:

1. School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia 5001, Australia

Abstract

Lysophosphatidic acid (LPA) was shown to be a powerful inhibitor of gap-junctional communication between cultured rat liver WB cells, as determined by the transfer of Lucifer Yellow, with 50% inhibition obtained at about 0.3 microM LPA. Inhibition of communication was rapid (5 min) and was maintained for at least 80 min. After incubation for 3 h with LPA, communication competence was partially restored and dye transfer was refractory to further addition of LPA. Communication in LPA-refractory cells retained sensitivity to inhibition by phorbol ester and by epidermal growth factor (EGF). LPA-induced inhibition was associated with phosphorylation of connexin-43 protein, as detected by slower migration of the protein detected on Western blots, which could be eliminated by incubation of samples with alkaline phosphatase. A close correspondence was observed between the time- and dose-dependency of LPA effects on communication and the induction of mitogen-activated protein kinase (MAP kinase). Activation of both the 42 kDa and 44 kDa subspecies were confirmed by mobility shifts on Western blots using an anti-(MAP kinase R1) (erk 1-III) antibody and by fractionation on Mono Q columns. Cells pretreated with phorbol ester for 24 h were insensitive to phorbol ester inhibition of communication or activation of MAP kinase, but retained their sensitivity to LPA. The results indicate that LPA initiates the activation of protein kinase cascades in WB cells that are probably independent of protein kinase C and identifies connexin-43 as one substrate for the activated kinases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3