Heterologous expression in Escherichia coli of native and mutant forms of the major intrinsic protein of rat eye lens (MIP26)

Author:

Dilsiz N1,Crabbe M J C1

Affiliation:

1. Wolfson Laboratory, School of Animal and Microbial Sciences, University of Reading, P.O. Box 228, Whiteknights, Reading RG6 2AJ, U.K.

Abstract

The complete cDNA of rat eye lens major intrinsic protein (MIP26) was sequenced using the dideoxy chain termination method. The sequence displayed 89% nucleotide identity and 95% identity at the amino acid level with bovine MIP26 [Gorin, Yancey, Cline, Revel and Horwitz (1984) Cell, 39, 49-54]. Both native and mutant cDNAs coding for rat MIP26 were amplified by PCR and subcloned into the pPOW expression vector for expression of Escherichia coli. A membrane signal peptide (PelB) was used for secretion of MIP26 into the cytoplasmic membrane. A hydrophilic octapeptide tail (FLAG) was fused to either the N- or C-terminus of MIP26 to aid monoclonal antibody-mediated identification and purification. Heterologously expressed MIP26 was identified by using a monoclonal antibody corresponding to the FLAG peptide located at the termini of MIP26. Immunofluorescently labelled monoclonal antibody was used to determine the localization of MIP26 in the cytoplasmic membrane. The majority of the protein was integrated into cell plasma membrane. MIP26 was extracted with n-octyl beta-D-glucopyranoside and then purified on an affinity gel column. Rat MIP26 cDNA contains an -Asn-Gly- sequence at the C-terminus, which has been shown in other proteins to be particularly susceptible to spontaneous deamidation [Takemoto and Emmons (1991) Curr. Eye Res. 10, 863-869]. We therefore modified the MIP26 molecule using a site-directed mutagenesis method to generate a mutant MIP26 at the appropriate asparagine residue (Asn244-->Asp) near the C-terminus. The mutation was confirmed by DNA sequencing. The mutant MIP26 protein was also expressed in E. coli and incorporated predominantly into the cytoplasmic membrane.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3