Fibrinogen–fibrin conversion. The mechanism of fibrin-polymer formation in solution

Author:

Smith Gerald F.1

Affiliation:

1. Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46206, U.S.A.

Abstract

The fibrin polymers formed in solution during the earliest phase of the fibrinogen–fibrin conversion are shown to be stable soluble molecules at pH7.4 and 0.15m- or 0.3m-NaCl. The various sequential soluble fibrin polymers produced from the fibrinogen–thrombin reaction can be observed by gel chromatography and can be isolated for characterization. The mechanism of fibrin polymerization proposed from the present studies suggests that the initial event is the thrombin activation at only one of the A α-chains in fibrinogen. The resulting highly reactive intermediate is the true fibrin monomer and it rapidly, and irreversibly, self-associates to form the stable fibrin dimer (s20.w=12S). Fibrin dimer possesses the N-terminal pattern alanine/glycine/tyrosine (1:1:2) per 340000 molecular weight, and possesses the chain structure [(α)A α)(B β)2(γ)2]2. The fibrin dimer is a soluble inert molecule, but additional thrombin activation of its remaining intact A α-chains leads to new associations into larger inert soluble fibrin polymers. In this manner progressively larger fibrin oligomers are constructed with thrombin continually in control of the process because of the necessity to repeatedly re-activate the various fibrin polymers in solution. The inert character of the soluble fibrin polymers can be explained by the reciprocal alignment of the associating molecules, which mutually consumes their active surfaces and leaves an intact A α-chain at either end of each fibrin oligomer. The soluble fibrin polymers will proceed to further association only if thrombin activates these remaining A α-chains, otherwise the fibrin molecules are stable indefinitely. The intermolecular associations within the soluble fibrin polymers are essentially irreversible under these nearly physiological conditions. However, the bonding is not covalent. This mechanism accounts for the clinical observations of stable fibrinogen-derived polymers in the plasma from patients undergoing thrombotic processes. Since it is shown that the intermediate fibrin polymers, themselves, are stable soluble molecules, it is no longer necessary, nor warranted, to invoke hypothetical ‘fibrinogen–fibrin complexes’ to explain observations of fibrin solubility.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3