Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover

Author:

Blackshear P. J.123

Affiliation:

1. Office of Clinical Research and the Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A.

2. Department of Medicine, Duke University Medical Center, Durham, NC 27710, U.S.A.

3. Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, U.S.A.

Abstract

The tristetraprolin (TTP) family of CCCH tandem zinc-finger proteins is composed of three known members in mammals, with a fourth member recently identified in frogs and fish. Although TTP was first cloned more than 10 years ago as a growth factor-induced gene, a physiological function for the protein has been discovered only within the last few years. TTP is now known to bind to so-called class II AU-rich elements within the mRNAs that encode tumour necrosis factor-α and granulocyte/macrophage colony-stimulating factor. In both cases, this binding results in destabilization of the mRNA and decreased secretion of the protein. Recent evidence suggests that TTP can accomplish this accelerated mRNA degradation by first promoting removal of the polyadenylated tail from the mRNA (deadenylation). In functional assays in cells, the other family members have similar activities, but are expressed differently in tissues and in response to stimuli, suggesting that they may control the stability of mRNAs under different circumstances from those in which TTP affects mRNA. All of these proteins are phosphoproteins and nucleo-cytoplasmic shuttling proteins, suggesting that their activities can be regulated in ways other than regulating gene transcription. Together, the TTP family members should be capable of complex regulation of short-lived mRNAs containing this type of AU-rich instability motif.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3