Oestrogen and stroke: the potential for harm as well as benefit

Author:

Macrae I.M.1,Carswell H.V.1

Affiliation:

1. Division of Clinical Neuroscience, Wellcome Surgical Institute, University of Glasgow, Garscube Estate, Glasgow G61 1QH, U.K.

Abstract

Epidemiological studies point to a beneficial influence of the female reproductive hormones on stroke risk in that women have a lower incidence of stroke prior to the menopause compared with men, but this difference weakens with age and stroke risk in women rises after the menopause. However, recent Women's Health Initiative trials in post-menopausal women report an increased stroke risk on hormone replacement therapy. An influence of gender is also apparent on stroke outcome in animal models: female rats exposed to transient MCA (middle cerebral artery) occlusion sustain less brain damage than age-matched males, with loss of protection following ovariectomy. The major hormone thought to be responsible for beneficial influences on stroke incidence and outcome is oestrogen, and a large preclinical literature now exists where exogenously administered oestrogen has been studied in male and ovariectomized female rats using a range of stroke models and outcome measures. Most of these studies administer oestrogen prior to the stroke, use a model of transient ischaemia followed by reperfusion and report a significant oestrogen-induced neuroprotection. However, in some studies where the MCA is permanently occluded, oestrogen pre-treatment in ovariectomized female rats has been shown to significantly exacerbate ischaemic damage. Therefore preclinical results demonstrate harmful as well as beneficial influences of oestrogen on the ischaemic brain, highlighting the need for further study to elucidate the mechanisms responsible for both detrimental and beneficial influences. Ultimately, this could lead to the development of new classes of oestrogenic compounds with improved risk/benefit profiles, designed to selectively activate pathways inducing only the beneficial effects of oestrogen in vivo.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3