Affinity labelling of the Ca2+-activated neutral proteinase (calpain) in intact human platelets

Author:

Anagli J1,Hagmann J1,Shaw E1

Affiliation:

1. Friedrich Miescher-Institut, Posffach 2543, CH-4002 Basel, Switzerland

Abstract

Two irreversible calpain inhibitors, benzyloxycarbonyl (Cbz)-Leu-Leu-Tyr-Ch2F and Cbz-Leu-Leu-Tyr-CHN2, were shown earlier [Anagli, Hagmann and Shaw (1991) Biochem. J. 274, 497-502] to penetrate intact platelets and to inactivate calpain. This permitted an evaluation of certain functions attributed to this proteinase. For example, in platelets pretreated with these inhibitors, talin and actin-binding protein were protected from subsequent degradation when the Ca2+ level was raised. On the other hand, additional properties of stimulated platelets attributed to calpain remained unaffected by this treatment, and such hypotheses may be dismissed. Radioiodinated inhibitors permitted confirmation of the labelling of calpain by the procedures used. Although Cbz-Leu-Leu-Tyr-CHN2 is more effective in vitro than the corresponding fluoromethyl ketone, we now show that the latter penetrates more readily. These two inhibitors, and two additional ones, t-butyloxycarbonyl-Val-Lys(Cbz)-Leu-Tyr- CHN2 and Cbz-Leu-Tyr-CH2F, have been radioiodinated to permit a comparison of their intracellular labelling patterns in activated platelets. Calpain is the major target of all four inhibitors. Although they are closely related peptide structures, variations with respect to the labelling of additional proteins were observed. These were minor in the case of the peptidyl diazomethyl ketones, but were major in the case of the fluoromethyl ketones. However, in contrast to calpain, this labelling was neither time-dependent nor Ca(2+)-dependent. Radiolabelling and cellular fractionation studies were used to localize active calpain during platelet activation. Calpain appears to be activated in the cytosol and translocated to the membrane or cytoskeletal sites.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3