Caspase-1 (interleukin-1β-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9

Author:

ANNAND Robert R.1,DAHLEN Jeffrey R.2,SPRECHER Cindy A.3,DREU Piet DE4,FOSTER Donald C.3,MANKOVICH John A.5,TALANIAN Robert V.5,KISIEL Walter2,GIEGEL David A.4

Affiliation:

1. Mitotix Inc., One Kendall Square, Bldg. 600, Cambridge MA 02139, U.S.A.

2. Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-5301, U.S.A.

3. Zymogenetics Inc., 1201 Eastlake Avenue East, Seattle, WA 98102, U.S.A.

4. Department of Biochemistry, Parke-Davis Pharmaceutical Research, 2800 Plymouth Road, Ann Arbor, MI 48105, U.S.A.

5. BASF Bioresearch Inc., 100 Research Drive, Worcester, MA 01605, U.S.A.

Abstract

The regulation of caspases, cysteine proteinases that cleave their substrates after aspartic residues, is poorly understood, even though they are involved in tightly regulated cellular processes. The recently discovered serpin analogue proteinase inhibitor 9 (PI9) is unique among human serpin analogues in that it has an acidic residue in the putative specificity-determining position of the reactive-site loop. We measured the ability of PI9 to inhibit the amidolytic activity of several caspases. The hydrolysis of peptide substrates by caspase-1 (interleukin-1β-converting enzyme), caspase-4 and caspase-8 is inhibited by PI9 in a time-dependent manner. The rate of reaction of caspase-1 with PI9, as well as the rate of substrate hydrolysis of the initial caspase-PI9 complex, shows a hyperbolic dependence on the concentration of PI9, indicative of a two-step kinetic mechanism for inhibition with an apparent second-order rate constant of 7×102 M-1˙s-1. The hydrolysis of a tetrapeptide substrate by caspase-3 is not inhibited by PI9. The complexes of caspase-1 and caspase-4 with PI9 can be immunoprecipitated but no complex with caspase-3 can be detected. No complex can be immunoprecipitated if the active site of the caspase is blocked with a covalent inhibitor. These results show that PI9 is an inhibitor of caspase-1 and to a smaller extent caspase-4 and caspase-8, but not of the more distantly related caspase-3. PI9 is the first example of a human serpin analogue that inhibits members of this class of cysteine proteinases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3