Quantitative determination of Ca2+-dependent Mg2+-ATPase from sarcoplasmic reticulum in muscle biopsies

Author:

Everts M E1,Andersen J P1,Clausen T1,Hansen O1

Affiliation:

1. Institute of Physiology, University of Aarhus, Physiology, University of Aarhus, DK-8000 Åarhus C, Denmark.

Abstract

The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3