Characterization of fatty acid synthase monomers restrained from reassociating by immobilization to a solid support

Author:

Petithory J R1,Smith S1

Affiliation:

1. Children's Hospital Oakland Research Institute, 747 Fifty-second Street, Oakland, CA 94609, U.S.A.

Abstract

The controversial question as to whether the ketoreductase activity of the animal fatty acid synthase is lost on dissociation of the homodimer has been addressed by using immobilized subunits which cannot reassociate under the conditions of assay. Ketoreductase activity, assessed with the model substrate S-acetoacetyl-N-acetylcysteamine, was identical in immobilized monomers and dimers, exhibiting normal Michaelis-Menten kinetics with Km values in the millimolar range. When acetoacetyl-CoA was used as a substrate, however, biphasic kinetics were observed in the case of the dimer, with estimated Km values in the micro- and milli-molar ranges, but only the high-Km reaction was observed with the monomer. Thus when the ketoreductase activities of the monomer and dimer are assessed with acetoacetyl-CoA at concentrations sufficient to saturate only the low-Km reaction, it appears that the ketoreductase activity towards acetoacetyl-CoA is lost upon dissociation. Reduction of acetoacetyl-CoA via the low-Km pathway is CoA-dependent, indicating that acetoacetyl-CoA can react with the dimer by two mechanisms: a high-Km pathway analogous to that utilized by model substrates and a low-Km pathway in which substrate and product are transferred between acyl-CoA and acyl-enzyme forms. The results indicate that the ketoreductase activity per se is unaffected by subunit dissociation and are consistent with a model in which the transfer of substrate from CoA ester to the acyl-carrier-protein domain necessitates juxtaposition of the transferase active-site serine residue of one subunit and the phosphopantetheine moiety of the adjacent subunit.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3