Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space

Author:

HAN Derick1,WILLIAMS Everett1,CADENAS Enrique1

Affiliation:

1. Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, U.S.A.

Abstract

It has been generally accepted that superoxide anion generated by the mitochondrial respiratory transport chain are vectorially released into the mitochondrial matrix, where they are converted to hydrogen peroxide through the catalytic action of Mn-superoxide dismutase. Release of superoxide anion into the intermembrane space is a controversial topic, partly unresolved by the reaction of superoxide anion with cytochrome c, which faces the intermembrane space and is present in this compartment at a high concentration. This study was aimed at assessing the topological site(s) of release of superoxide anion during respiratory chain activity. To address this issue, mitoplasts were prepared from isolated mitochondria by digitonin treatment to remove portions of the outer membrane along with portions of cytochrome c. EPR analysis in conjunction with spin traps of antimycin-supplemented mitoplasts revealed the formation of a spin adduct of superoxide anion. The EPR signal was (i) abrogated by superoxide dismutase, (ii) decreased competitively by exogenous ferricytochrome c and (iii) broadened by the membrane-impermeable spin-broadening agent chromium trioxalate. These results confirm the production and release of superoxide anion towards the cytosolic side of the inner mitochondrial membrane. In addition, co-treatment of mitoplasts with myxothiazol and antimycin A, resulting in an inhibition of the oxidation of ubiquinol to ubisemiquinone, abolished the EPR signal, thus suggesting that ubisemiquinone autoxidation at the outer site of the complex-III ubiquinone pool is a pathway for superoxide anion formation and subsequent release into the intermembrane space. The generation of superoxide anion towards the intermembrane space requires consideration of the mitochondrial steady-state values for superoxide anion and hydrogen peroxide, the decay pathways of these oxidants in this compartment and the implications of these processes for cytosolic events.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3