Increased β1-adrenergic receptor antibody confers a vulnerable substrate for atrial fibrillation via mediating Ca2+ mishandling and atrial fibrosis in active immunization rabbit models

Author:

Sun Huaxin12ORCID,Song Jie12,Li Kai12,Li Yao3,Shang Luxiang4,Zhou Qina5,Lu Yanmei12,Zong Yazhen12,He Xiuyuan12,Kari Muzappar12,Yang Hang12,Zhou Xianhui12,Zhang Ling1,Tang Baopeng12ORCID

Affiliation:

1. 1Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China

2. 2Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China

3. 3Psychosomatic Medical Center, The Fourth People’s Hospital of Chengdu, Chengdu, China

4. 4Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China

5. 5School of Nursing, Midwifery and Social Work, University of Queensland, Brisbane, Queensland, Australia

Abstract

Abstract Background: Autoimmune disorder is the emerging mechanism of atrial fibrillation (AF). The β1-adrenergic receptor antibody (β1-AAb) is associated with AF progress. Our study aims to investigate whether β1-AAbs involves in atrial vulnerable substrate by mediating Ca2+ mishandling and atrial fibrosis in autoimmune associated AF. Methods: Active immunization models were established via subcutaneous injection of the second extracellular loop (ECL2) peptide for β1 adrenergic receptor (β1AR). Invasive electrophysiologic study and ex vivo optical mapping were used to evaluate the changed electrophysiology parameters and calcium handling properties. Phospho-proteomics combined with molecular biology assay were performed to identify the potential mechanisms of remodeled atrial substrate elicited by β1-AAbs. Exogenous β1-AAbs were used to induce the cellular phenotypes of HL-1 cells and atrial fibroblasts to AF propensity. Results: β1-AAbs aggravated the atrial electrical instability and atrial fibrosis. Bisoprolol alleviated the alterations of action potential duration (APD), Ca2+ transient duration (CaD), and conduction heterogeneity challenged by β1-AAbs. β1-AAbs prolonged calcium transient refractoriness and promoted arrhythmogenic atrial alternans and spatially discordant alternans, which were partly counteracted through blocking β1AR. Its underlying mechanisms are related to β1AR-drived CaMKII/RyR2 activation of atrial cardiomyocytes and the myofibroblasts phenotype formation of fibroblasts. Conclusion: Suppressing β1-AAbs effectively protects the atrial vulnerable substrate by ameliorating intracellular Ca2+ mishandling and atrial fibrosis, preventing the process of the autoimmune associated AF.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3