Ovine PrP transgenic Drosophila show reduced locomotor activity and decreased survival

Author:

Thackray Alana M.1,Muhammad Farooq1,Zhang Chang1,Di Ying1,Jahn Thomas R.2,Landgraf Matthias3,Crowther Damian C.2,Evers Jan Felix3,Bujdoso Raymond1

Affiliation:

1. Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, U.K.

2. Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, U.K.

3. Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, U.K.

Abstract

Drosophila have emerged as a model system to study mammalian neurodegenerative diseases. In the present study we have generated Drosophila transgenic for ovine PrP (prion protein) to begin to establish an invertebrate model of ovine prion disease. We generated Drosophila transgenic for polymorphic variants of ovine PrP by PhiC31 site-specific germ-line transformation under expression control by the bi-partite GAL4/UAS (upstream activating sequence) system. Site-specific transgene insertion in the fly genome allowed us to test the hypothesis that single amino acid codon changes in ovine PrP modulate prion protein levels and the phenotype of the fly when expressed in the Drosophila nervous system. The Arg154 ovine PrP variants showed higher levels of PrP expression in neuronal cell bodies and insoluble PrP conformer than did His154 variants. High levels of ovine PrP expression in Drosophila were associated with phenotypic effects, including reduced locomotor activity and decreased survival. Significantly, the present study highlights a critical role for helix-1 in the formation of distinct conformers of ovine PrP, since expression of His154 variants were associated with decreased survival in the absence of high levels of PrP accumulation. Collectively, the present study shows that variants of the ovine PrP are associated with different spontaneous detrimental effects in ovine PrP transgenic Drosophila.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3