Redox signalling involving NADPH oxidase-derived reactive oxygen species

Author:

Dworakowski R.1,Anilkumar N.1,Zhang M.1,Shah A.M.1

Affiliation:

1. Cardiovascular Division, Department of Cardiology, King's College London School of Medicine, Bessemer Road, London SE5 9PJ, U.K.

Abstract

Increased oxidative stress plays an important role in the pathophysiology of many diseases such as atherosclerosis, diabetes mellitus, myocardial infarction and heart failure. In addition to the well-known damaging effects of oxygen-free radicals, ROS (reactive oxygen species) also have signalling roles, acting as second messengers that modulate the activity of diverse intracellular signalling pathways and transcription factors, thereby inducing changes in cell phenotype. NADPH oxidases appear to be especially important sources of ROS involved in redox signalling. Seven NADPH oxidase isoforms, known as Noxs (NAPDH oxidases), are expressed in a cell- and tissue-specific fashion. These oxidases are thought to subserve distinct functions as a result of their tightly regulated activation (e.g. by neurohormonal and growth factors and mechanical stimuli) and their specific coupling with distinct downstream signalling pathways. In the present paper, we review the structure and mechanisms of activation of NADPH oxidases and consider their involvement in redox signalling, focusing mainly on the cardiovascular system.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3