AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside

Author:

Guigas Bruno1,Taleux Nellie12,Foretz Marc34,Detaille Dominique2,Andreelli Fabrizio34,Viollet Benoit34,Hue Louis1

Affiliation:

1. Université catholique de Louvain and Institute of Cellular Pathology, Hormone and Metabolic Research Unit, Brussels, Belgium

2. Bioénergétique Fondamentale et Appliquée INSERM-EMI0221, Université J. Fourier, Grenoble, France

3. Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France

4. Inserm, U567, Paris, France

Abstract

AICA riboside (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) has been extensively used in cells to activate the AMPK (AMP-activated protein kinase), a metabolic sensor involved in cell energy homoeostasis. In the present study, we investigated the effects of AICA riboside on mitochondrial oxidative; phosphorylation. AICA riboside was found to dose-dependently inhibit the oligomycin-sensitive JO2 (oxygen consumption rate) of isolated rat hepatocytes. A decrease in Pi (inorganic phosphate), ATP, AMP and total adenine nucleotide contents was also observed with AICA riboside concentrations >0.1 mM. Interestingly, in hepatocytes from mice lacking both α1 and α2 AMPK catalytic subunits, basal JO2 and expression of several mitochondrial proteins were significantly reduced compared with wild-type mice, suggesting that mitochondrial biogenesis was perturbed. However, inhibition of JO2 by AICA riboside was still present in the mutant mice and thus was clearly not mediated by AMPK. In permeabilized hepatocytes, this inhibition was no longer evident, suggesting that it could be due to intracellular accumulation of Z nucleotides and/or loss of adenine nucleotides and Pi. ZMP did indeed inhibit respiration in isolated rat mitochondria through a direct effect on the respiratory-chain complex I. In addition, inhibition of JO2 by AICA riboside was also potentiated in cells incubated with fructose to deplete adenine nucleotides and Pi. We conclude that AICA riboside inhibits cellular respiration by an AMPK-independent mechanism that likely results from the combined intracellular Pi depletion and ZMP accumulation. Our data also demonstrate that the cellular effects of AICA riboside are not necessarily caused by AMPK activation and that their interpretation should be taken with caution.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3