Affiliation:
1. Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
2. Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
Abstract
Identifying factors that affect the self-assembly of Aβ (amyloid-β peptide) is of utmost importance in the quest to understand the molecular mechanisms causing AD (Alzheimer's disease). Ca2+ has previously been shown to accelerate both Aβ fibril nucleation and maturation, and dysregulated Ca2+ homoeostasis frequently correlates with development of AD. The mechanisms regarding Ca2+ binding, as well as its effect on fibril kinetics, are not fully understood. Using a polymerization assay we show that Ca2+ in a dynamic and reversible manner enhances both the elongation rate and fibrillar stability, where specifically the ‘dock and lock’ phase mechanism is enhanced. Through NMR analysis we found that Ca2+ affects the fibrillar architecture. In addition, and unexpectedly, we found that Ca2+ does not bind the free Aβ monomer. This implies that Ca2+ binding requires an architecture adopted by assembled peptides, and consequently is mediated through intermolecular interactions between adjacent peptides. This gives a mechanistic explanation to the enhancing effect on fibril maturation and indicates structural similarities between prefibrillar structures and mature amyloid. Taken together we show how Ca2+ levels affect the delicate equilibrium between the monomeric and assembled Aβ and how fluctuations in vivo may contribute to development and progression of the disease.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献