Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues

Author:

FURUYAMA Tatsuo1,NAKAZAWA Toru1,NAKANO Itsuko2,MORI Nozomu12

Affiliation:

1. Laboratory of Genetics of Aging, Department of Molecular Genetic Research, National Institute for Longevity Sciences (NILS), 36-3 Gengo, Morioka, Oobu, Aichi 474-8522, Japan

2. CREST, Science and Technology Corporation of Japan (JST), 36-3 Gengo, Morioka, Oobu, Aichi 474-8522, Japan

Abstract

daf-16 is a forkhead-type transcription factor, functioning downstream of insulin-like signals, and is known to be critical to the regulation of life span in Caenorhabditis elegans. Mammalian DAF-16 homologues include AFX, FKHR and FKHRL1, which contain a conserved forkhead domain and three putative phosphorylation sites for the Ser/Thr kinase Akt/protein kinase B (PKB), as well as for DAF-16. To assess the function of the homologues, we examined tissue distribution patterns of mRNAs for DAF-16 homologues in mice. In the embryos, expressions of AFX, FKHR and FKHRL1 mRNAs were complementary to each other and were highest in muscle, adipose tissue and embryonic liver. The characteristic expression pattern remained in the adult, except that signals of FKHRL1 became evident in more tissues, including the brain. In order to clarify whether each DAF-16 homologue had different target genes, we determined the consensus sequences for the binding of DAF-16 and the mouse homologues. The binding sequences for all four proteins shared a core sequence, TTGTTTAC, daf-16 family protein-binding element (DBE) binding protein. However, electrophoretic mobility shift assay showed that the binding affinity of DAF-16 homologues to the core sequence was stronger than that to the insulin-responsive element in the insulin-like growth factor binding protein-1 promoter region, which has been identified as a binding sequence for them. We identified one copy of the DBE upstream of the first exon of sod-3 by searching the genomic database of C. elegans. Taken together, DAF-16 homologues can fundamentally regulate the common target genes in insulin-responsive tissues and the specificity to target genes of each protein is partially determined by the differences in their expression patterns.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 377 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3