Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells

Author:

Yeates T.O.123,Tsai Y.2,Tanaka S.1,Sawaya M.R.3,Kerfeld C.A.4

Affiliation:

1. UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, U.S.A.

2. UCLA Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, U.S.A.

3. UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, U.S.A.

4. UCLA Life Sciences Core, University of California Los Angeles, Box 160606, Los Angeles, CA 90095-1570, U.S.A.

Abstract

Many proteins self-assemble to form large supramolecular complexes. Numerous examples of these structures have been characterized, ranging from spherical viruses to tubular protein assemblies. Some new kinds of supramolecular structures are just coming to light, while it is likely there are others that have not yet been discovered. The carboxysome is a subcellular structure that has been known for more than 40 years, but whose structural and functional details are just now emerging. This giant polyhedral body is constructed as a closed shell assembled from several thousand protein subunits. Within this protein shell, the carboxysome encapsulates the CO2-fixing enzymes, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbonic anhydrase; this arrangement enhances the efficiency of cellular CO2 fixation. The carboxysome is present in many photosynthetic and chemoautotrophic bacteria, and so plays an important role in the global carbon cycle. It also serves as the prototypical member of what appears to be a large class of primitive protein-based organelles in bacteria. A series of crystal structures is beginning to reveal the secrets of how the carboxysome is assembled and how it enhances the efficiency of CO2 fixation. Some of the assembly principles revealed in the carboxysome are reminiscent of those seen in icosahedral viral capsids. In addition, the shell appears to be perforated by pores for metabolite transport into and out of the carboxysome, suggesting comparisons to the pores through oligomeric transmembrane proteins, which serve to transport small molecules across the membrane bilayers of cells and eukaryotic organelles.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3