Macrophage migration inhibitory factor plays an essential role in ischemic preconditioning-mediated cardioprotection

Author:

Ruze Amanguli123,Chen Bang-Dang145,Liu Fen145,Chen Xiao-Cui145,Gai Min-Tao145,Li Xiao-Mei14,Ma Yi-Tong124,Du Xiao-Jun6,Yang Yi-Ning124ORCID,Gao Xiao-Ming12456

Affiliation:

1. Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China

2. State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China

3. Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China

4. Xinjiang Key Laboratory of Cardiovascular Research, Urumqi, Xinjiang, China

5. Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China

6. Baker Heart and Diabetes Institute, and Department of Surgery, Central Clinical School, Monash University, Melbourne, Australia

Abstract

Abstract Ischemic preconditioning (IPC) is an endogenous protection strategy against myocardial ischemia–reperfusion (I/R) injury. Macrophage migration inhibitory factor (MIF) released from the myocardium subjected to brief periods of ischemia confers cardioprotection. We hypothesized that MIF plays an essential role in IPC-induced cardioprotection. I/R was induced either ex vivo or in vivo in male wild-type (WT) and MIF knockout (MIFKO) mice with or without proceeding IPC (three cycles of 5-min ischemia and 5-min reperfusion). Indices of myocardial injury, regional inflammation and cardiac function were determined to evaluate the extent of I/R injury. Activations of the reperfusion injury salvage kinase (RISK) pathway, AMP-activated protein kinase (AMPK) and their downstream components were investigated to explore the underlying mechanisms. IPC conferred prominent protection in WT hearts evidenced by reduced infarct size (by 33–35%), myocyte apoptosis and enzymatic markers of tissue injury, ROS production, inflammatory cell infiltration and MCP1/CCR2 expression (all P<0.05). IPC also ameliorated cardiac dysfunction both ex vivo and in vivo. These protective effects were abolished in MIFKO hearts. Notably, IPC mediated further activations of RISK pathway, AMPK and the membrane translocation of GLUT4 in WT hearts. Deletion of MIF blunted these changes in response to IPC, which is the likely basis for the absence of protective effects of IPC against I/R injury. In conclusion, MIF plays a critical role in IPC-mediated cardioprotection under ischemic stress by activating RISK signaling pathway and AMPK. These results provide an insight for developing a novel therapeutic strategy that target MIF to protect ischemic hearts.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3