Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2

Author:

Hu Yinlan1,Jin Guoqing12,Li Bing1,Chen Yanmei1ORCID,Zhong Lintao1,Chen Guojun1,Chen Xiaoqiang1,Zhong Jiayuan1,Liao Wangjun3,Liao Yulin1,Wang Yuegang1,Bin Jianping1

Affiliation:

1. State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

2. Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China

3. Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Abstract

Abstract MiRNAs regulate the cardiomyocyte (CM) cell cycle at the post-transcriptional level, affect cell proliferation, and intervene in harmed CM repair post-injury. The present study was undertaken to characterize the role of let-7i-5p in the processes of CM cell cycle and proliferation and to reveal the mechanisms thereof. In the present study, we used real-time qPCR (RT-qPCR) to determine the up-regulated let-7i-5p in CMs during the postnatal switch from proliferation to terminal differentiation and further validated the role of let-7i-5p by loss- and gain-of-function of let-7i-5p in CMs in vitro and in vivo. We found that the overexpression of let-7i-5p inhibited CM proliferation, whereas the suppression of let-7i-5p significantly facilitated CM proliferation. E2F2 and CCND2 were identified as the targets of let-7i-5p, mediating its effect in regulating the cell cycle of CMs. Supperession of let-7i-5p promoted the recovery of heart function post-myocardial infarction by enhancing E2F2 and CCND2. Collectively, our results revealed that let-7i-5p is involved in the regulation of the CM cell cycle and further impacts proliferation, which may offer a new potential therapeutic strategy for cardiac repair after ischemic injury.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3