Effects of RNA interference-mediated gene silencing of VEGF on the ultrafiltration failure in a rat model of peritoneal dialysis

Author:

Wang Zhi-Kui1,Wang Zhao-Xia1,Liu Zhen-Ying1,Ren Yue-Qin1,Zhou Zhong-Qi1

Affiliation:

1. Department of Nephrology, Linyi People’s Hospital, Linyi 276003, P.R. China

Abstract

We investigated the effects of RNAi-mediated gene silencing of vascular endothelial growth factor (VEGF) on ultrafiltration failure (UFF) in rats with peritoneal dialysis (PD). Sprague–Dawley (SD) male rats were classified into normal, sham operation, and uremic model groups. Uremic rats were subcategorized into uremia, PD2, VEGF shRNA-2, vector-2, PD2 + Endostar, PD4, VEGF shRNA-4, Vector-4, and PD4 + Endostar groups. Peritoneal Equilibration Test (PET) was conducted to assess ultrafiltration volume (UFV) and mass transfer of glucose (MTG). mRNA and protein expressions of VEGF were detected using quantitative real-time PCR (qRT-PCR) and Western blotting. Immunohistochemistry was performed to detect microvessel density (MVD). Compared with the normal group, decreased UFV and increased MTG were observed in rest of the groups. Compared with the uremia group, UFV decreased, while MTG, expression of VEGFs, and number of new blood capillaries increased in the PD2, Vector-2, PD4, and Vector-4 groups. The PD4 and Vector-4 groups exhibited lower UFV and higher MTG than the PD2 group. In the VEGF shRNA-2, PD2 + Endostar, VEGF shRNA-4, and in PD4 + Endostar group increased UFV, reduced MTG and expression of VEGF, and decreased number of new blood capillaries were detected. Compared with the PD4 group, in the VEGF shRNA-4 and PD4 + Endostar groups, UFV increased, MTG and expression of VEGF decreased, and number of new blood capillaries reduced. VEGF expression was negatively correlated with UFV, but positively correlated with MTG. The results obtained in the study revealed that down-regulation of VEGF by RNAi could be a novel target approach for the treatment of UFF.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3