Control of the citric acid cycle by glyoxylate. The mechanism of inhibition of oxoglutarate dehydrogenase, isocitrate dehydrogenase and aconitate hydratase

Author:

Adinolfi A.1,Moratti R.1,Olezza S.1,Ruffo A.1

Affiliation:

1. Impresa Enzimologia, C.N.R., c/o Institute of Biological Chemistry, University of Pavia, 27100 Pavia, Italy

Abstract

1. The effects of glyoxylate on partially purified preparations of aconitate hydratase, isocitrate dehydrogenase and oxoglutarate dehydrogenase were compared with those of oxalomalate and hydroxyoxoglutarate (obtained by condensation of glyoxylate with oxaloacetate and pyruvate respectively). 2. Glyoxylate (1mm) did not affect aconitate hydratase and isocitrate dehydrogenase, whereas oxalomalate (1mm) inhibited the enzyme activities completely. 3. Glyoxylate (0·025mm) inhibited oxoglutarate dehydrogenase irreversibly, whereas the same concentrations of oxalomalate and hydroxyoxoglutarate were ineffective. This inhibitory effect was prevented if oxoglutarate, pyruvate or oxaloacetate was mixed with the enzyme before the glyoxylate. 4. Incubation of oxoglutarate dehydrogenase with radioactive glyoxylate produced radioactive carbon dioxide; radioactivity was also recovered in the portion of the enzyme identified with thiamin pyrophosphate. 5. The behaviour of glyoxylate in producing multiple inhibitions of the citric acid cycle, either by direct interaction with oxoglutarate dehydrogenase, or by means of its condensation compounds which inhibit aconitate hydratase and isocitrate dehydrogenase, is discussed.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3