Properties and regulation of leaf nicotinamide–adenine dinucleotide phosphate–malate dehydrogenase and ‘malic’ enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis

Author:

Johnson Hilary S.1,Hatch M. D.2

Affiliation:

1. Department of Botany, University of Queensland, St Lucia, Qld. 4067, Australia

2. David North Plant Research Centre, The Colonial Sugar Refining Co. Ltd., P.O. Box 68, Toowong, Qld. 4066, Australia

Abstract

1. NADP–malate dehydrogenase and `malic' enzyme in maize leaf extracts were separated from NAD–malate dehydrogenase and their properties were examined. 2. The NADP–malate dehydrogenase was nicotinamide nucleotide-specific but otherwise catalysed a reaction comparable with that with the NAD-specific enzyme. By contrast with the latter enzyme, a thiol was absolutely essential for maintaining the activity of the NADP–malate dehydrogenase, and the initial velocity in the direction of malate formation, relative to the reverse direction, was faster. 3. For the `malic' enzyme reaction the Km for malate was dependent on pH and the pH optimum varied with the malate concentration. At their respective optimum concentrations the maximum velocity for this enzyme was higher with Mg2+ than with Mn2+. 4. The NADP–malate dehydrogenase in green leaves was rapidly inactivated in the dark and was reactivated when plants were illuminated. Reactivation of the enzyme extracted from darkened leaves was achieved simply by adding a thiol compound. 5. The activity of both enzymes was low in etiolated leaves of maize plants grown in the dark but increased 10–20-fold, together with chlorophyll, when leaves were illuminated. 6. The activity of these enzymes in different species with the C4-dicarboxylic acid pathway was compared and their possible role in photosynthesis was considered.

Publisher

Portland Press Ltd.

Cited by 268 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3