Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring-fission, lactonizing and delactonizing enzymes

Author:

Gaunt J. K.1,Evans W. C.1

Affiliation:

1. Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Caerns., U.K.

Abstract

1. A cell-free system, prepared from Pseudomonas N.C.I.B. 9340 grown on 4-chloro-2-methylphenoxyacetate (MCPA) was shown to catalyse the reaction sequence: 5-chloro-3-methylcatechol → cis–cis-γ-chloro-α-methylmuconate → γ-carboxymethylene-α-methyl-Δαβ-butenolide → γ-hydroxy-α-methylmuconate. 2. The activity of the three enzymes involved in these reactions was completely resolved and the lactonizing and delactonizing enzymes were separated. 3. This part of the metabolic pathway of 4-chloro-2-methylphenoxyacetate is thus confirmed for this bacterium. 4. The ring-fission oxygenase required Fe2+ or Fe3+ and reduced glutathione for activity; the lactonizing enzyme is stimulated by Mn2+, Mg2+, Co2+ and Fe2+; no cofactor requirement could be demonstrated for the delactonizing enzyme. 5. cis–cis-γ-Chloro-α-methylmuconic acid was isolated and found to be somewhat unstable, readily lactonizing to γ-carboxymethylene-α-methyl-Δαβ-butenolide. 6. Enzymically the lactonization appears to be a single-step dehydrochlorinase reaction.

Publisher

Portland Press Ltd.

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3