Transforming growth factor-β2-mediated mesenchymal transition in lens epithelial cells is repressed in the absence of RAGE

Author:

Nam Mi-Hyun1,Pantcheva Mina B.1,Rankenberg Johanna1,Nagaraj Ram H.12ORCID

Affiliation:

1. Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, U.S.A.

2. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, U.S.A.

Abstract

Transforming growth factor-β2 (TGFβ2)-mediated epithelial to mesenchymal transition (EMT) in lens epithelial cells (LECs) has been implicated in fibrosis associated with secondary cataracts. In this study, we investigated whether the receptor for advanced glycation end products (RAGE) plays a role in TGFβ2-mediated EMT in LECs. Unlike in the LECs from wild-type mice, TGFβ2 failed to elicit an EMT response in LECs from RAGE knockout mice. The lack of RAGE also diminished TGFβ2-mediated Smad signaling. In addition, treatment with TGFβ2 increased IL-6 levels in LECs from wild-type mice but not in those from RAGE knockout mice. Treatment of human LECs with the RAGE inhibitor FPS-ZM1 reduced TGFβ2-mediated Smad signaling and the EMT response. Unlike that in wild-type lenses, the removal of fiber cell tissue in RAGE knockout lenses did not result in elevated levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and integrin β1 in capsule-adherent LECs. Taken together, these results suggest that TGFβ2 signaling is intricately linked to RAGE. Targeting RAGE could be explored as a therapeutic strategy against secondary cataracts.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3