Highly sensitive tryptophan fluorescence probe for detecting rhythmic conformational changes of KaiC in the cyanobacterial circadian clock system

Author:

Mukaiyama Atsushi12ORCID,Furuike Yoshihiko12,Yamashita Eiki3,Akiyama Shuji12

Affiliation:

1. 1Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan

2. 2Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan

3. 3Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita 565-0871, Japan

Abstract

KaiC, a core protein of the cyanobacterial circadian clock, consists of an N-terminal CI domain and a C-terminal CII domain, and assembles into a double-ring hexamer upon binding with ATP. KaiC rhythmically phosphorylates and dephosphorylates its own two adjacent residues Ser431 and Thr432 at the CII domain with a period of ∼24 h through assembly and disassembly with the other clock proteins, KaiA and/or KaiB. In this study, to understand how KaiC alters its conformation as the source of circadian rhythm, we investigated structural changes of an inner-radius side of the CII ring using time-resolved Trp fluorescence spectroscopy. A KaiC mutant harboring a Trp fluorescence probe at a position of 419 exhibited a robust circadian rhythm with little temperature sensitivity in the presence of KaiA and KaiB. Our fluorescence observations show a remarkable environmental change at the inner-radius side of the CII ring during circadian oscillation. Crystallographic analysis revealed that a side chain of Trp at the position of 419 was oriented toward a region undergoing a helix–coil transition, which is considered to be a key event to allosterically regulate the CI ring that plays a crucial role in determining the cycle period. The present study provides a dynamical insight into how KaiC generates circadian oscillation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3