Characterization of the structural determinants of the ubiquitin-dependent proteasomal degradation of human hepatic tryptophan 2,3-dioxygenase

Author:

Liu Yi1,Kim Sung-Mi1,Wang YongQiang1,Karkashon Shay2,Lewis-Ballester Ariel2,Yeh Syun-Ru2,Correia Maria Almira1345ORCID

Affiliation:

1. Departments of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158-2517, U.S.A.

2. Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, New York, NY 10461, U.S.A.

3. Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2517, U.S.A.

4. Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158-2517, U.S.A.

5. The Liver Center, University of California San Francisco, San Francisco, CA 94122, U.S.A.

Abstract

Human hepatic tryptophan 2,3-dioxygenase (hTDO) is a homotetrameric hemoprotein. It is one of the most rapidly degraded liver proteins with a half-life (t1/2) of ∼2.3 h, relative to an average t1/2 of ∼2–3 days for total liver protein. The molecular mechanism underlying the poor longevity of hTDO remains elusive. Previously, we showed that hTDO could be recognized and ubiquitinated by two E3 ubiquitin (Ub) ligases, gp78/AMFR and CHIP, and subsequently degraded via Ub-dependent proteasomal degradation pathway. Additionally, we identified 15 ubiquitination K-sites and demonstrated that Trp-binding to an exosite impeded its proteolytic degradation. Here, we further established autophagic-lysosomal degradation as an alternative back-up pathway for cellular hTDO degradation. In addition, with protein kinases A and C, we identified 13 phosphorylated Ser/Thr (pS/pT) sites. Mapping these pS/pT sites on the hTDO surface revealed their propinquity to acidic Asp/Glu (D/E) residues engendering negatively charged DEpSpT clusters vicinal to the ubiquitination K-sites over the entire protein surface. Through site-directed mutagenesis of positively charged patches of gp78, previously documented to interact with the DEpSpT clusters in other target proteins, we uncovered the likely role of the DEpSpT clusters in the molecular recognition of hTDO by gp78 and plausibly other E3 Ub-ligases. Furthermore, cycloheximide-chase analyses revealed the critical structural relevance of the disordered N- and C-termini not only in the Ub-ligase recognition, but also in the proteasome engagement. Together, the surface DEpSpT clusters and the N- and C-termini constitute an intrinsic bipartite degron for hTDO physiological turnover.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3