Calpain-2 specifically cleaves Junctophilin-2 at the same site as Calpain-1 but with less efficacy

Author:

Wang Jinxi1,Ciampa Grace12,Zheng Dong3,Shi Qian4,Chen Biyi1,Abel E. Dale45,Peng Tianqing3ORCID,Hall Duane D.1,Song Long-Sheng1256ORCID

Affiliation:

1. Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A.

2. Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A.

3. Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 4S2, Canada

4. Division of Endocrinology & Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A.

5. Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A.

6. Department of Veterans Affairs, Iowa City Medical Center, Iowa City, IA 52242, U.S.A.

Abstract

Calpain proteolysis contributes to the pathogenesis of heart failure but the calpain isoforms responsible and their substrate specificities have not been rigorously defined. One substrate, Junctophilin-2 (JP2), is essential for maintaining junctional cardiac dyads and excitation-contraction coupling. We previously demonstrated that mouse JP2 is cleaved by calpain-1 (CAPN1) between Arginine 565 (R565) and Threonine 566 (T566). Recently, calpain-2 (CAPN2) was reported to cleave JP2 at a novel site between Glycine 482 (G482) and Threonine 483 (T483). We aimed to directly compare the contributions of each calpain isoform, their Ca2+ sensitivity, and their cleavage site selection for JP2. We find CAPN1, CAPN2 and their requisite CAPNS1 regulatory subunit are induced by pressure overload stress that is concurrent with JP2 cleavage. Using in vitro calpain cleavage assays, we demonstrate that CAPN1 and CAPN2 cleave JP2 into similar 75 kD N-terminal (JP2NT) and 25 kD C-terminal fragments (JP2CT) with CAPNS1 co-expression enhancing proteolysis. Deletion mutagenesis shows both CAPN1 and CAPN2 require R565/T566 but not G482/T483. When heterologously expressed, the JP2CT peptide corresponding to R565/T566 cleavage approximates the 25 kD species found during cardiac stress while the C-terminal peptide from potential cleavage at G482/T483 produces a 35 kD product. Similar results were obtained for human JP2. Finally, we show that CAPN1 has higher Ca2+ sensitivity and cleavage efficacy than CAPN2 on JP2 and other cardiac substrates including cTnT, cTnI and β2-spectrin. We conclude that CAPN2 cleaves JP2 at the same functionally conserved R565/T566 site as CAPN1 but with less efficacy and suggest heart failure may be targeted through specific inhibition of CAPN1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3