Expression and function of SLC38A5, an amino acid-coupled Na+/H+ exchanger, in triple-negative breast cancer and its relevance to macropinocytosis

Author:

Ramachandran Sabarish1,R. Sennoune Souad1,Sharma Monica2,Thangaraju Muthusamy3ORCID,V. Suresh Varshini4,Sneigowski Tyler1,D. Bhutia Yangzom1ORCID,Pruitt Kevin2,Ganapathy Vadivel1ORCID

Affiliation:

1. Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.

2. Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.

3. Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A.

4. Department of Biology, Texas Tech University, Lubbock, TX 79409, U.S.A.

Abstract

Metabolic reprogramming in cancer necessitates increased amino acid uptake, which is accomplished by up-regulation of specific amino acid transporters. However, not all tumors rely on any single amino acid transporter for this purpose. Here, we report on the differential up-regulation of the amino acid transporter SLC38A5 in triple-negative breast cancer (TNBC). The up-regulation is evident in TNBC tumors, conventional and patient-derived xenograft TNBC cell lines, and a mouse model of spontaneous TNBC mammary tumor. The up-regulation is confirmed by functional assays. SLC38A5 is an amino acid-dependent Na+/H+ exchanger which transports Na+ and amino acids into cells coupled with H+ efflux. Since cell-surface Na+/H+ exchanger is an established inducer of macropinocytosis, an endocytic process for cellular uptake of bulk fluid and its components, we examined the impact of SLC38A5 on macropinocytosis in TNBC cells. We found that the transport function of SLC38A5 is coupled to the induction of macropinocytosis. Surprisingly, the transport function of SLC38A5 is inhibited by amilorides, the well-known inhibitors of Na+/H+ exchanger. Down-regulation of SLC38A5 in TNBC cells attenuates serine-induced macropinocytosis and reduces cell proliferation significantly as assessed by multiple methods, but does not induce cell death. The Cancer Genome Atlas database corroborates SLC38A5 up-regulation in TNBC. This represents the first report on the selective expression of SLC38A5 in TNBC and its role as an inducer of macropinocytosis, thus revealing a novel, hitherto unsuspected, function for an amino acid transporter that goes beyond amino acid delivery but is still relevant to cancer cell nutrition and proliferation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3