TAT–RHIM: a more complex issue than expected

Author:

Kolbrink Benedikt1,Riebeling Theresa1,Teiwes Nikolas K.2,Steinem Claudia23,Kalbacher Hubert4,Kunzendorf Ulrich1,Krautwald Stefan1

Affiliation:

1. Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105 Kiel, Germany

2. Institute of Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany

3. Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

4. Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany

Abstract

Murine cytomegalovirus protein M45 contains a RIP homotypic interaction motif (RHIM) that is sufficient to confer protection of infected cells against necroptotic cell death. Mechanistically, the N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils, and interacts with the endogenous RHIM domains of receptor-interacting serine/threonine protein kinases (RIPK) 1, RIPK3, Z-DNA-binding protein 1, and Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-β. Remarkably, all four aforementioned mammalian proteins harbouring such a RHIM domain are key components of inflammatory signalling and regulated cell death (RCD) processes. Immunogenic cell death by regulated necrosis causes extensive tissue damage in a wide range of diseases, including ischaemia reperfusion injury, myocardial infarction, sepsis, stroke, and solid organ transplantation. To harness the cell death suppression properties of M45 protein in a therapeutically usable manner, we developed a synthetic peptide encompassing only the RHIM domain of M45. To trigger delivery of RHIM into target cells, we fused the transactivator protein transduction domain of human immunodeficiency virus 1 to the N-terminus of the peptide. The fused peptide could efficiently penetrate eukaryotic cells, but unexpectedly it eradicated or destroyed all tested cancer cell lines and primary cells irrespective of species without further stimulus through a necrosis-like cell death. Typical inhibitors of different forms of RCD cannot impede this process, which appears to involve a direct disruption of biomembranes. Nevertheless, our finding has potential clinical relevance; reliable induction of a necrotic form of cell death distinct from all known forms of RCD may offer a novel therapeutic approach to combat resistant tumour cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The battle between host antiviral innate immunity and immune evasion by cytomegalovirus;Cellular and Molecular Life Sciences;2024-08-09

2. The role of RHIM in necroptosis;Biochemical Society Transactions;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3