Affiliation:
1. Department of Clinical Chemistry, Blegdamshospitalet, 2200 N Copenhagen, Denmark
Abstract
Urokinase-activated human plasma was studied by gel electrophoresis, gel filtration, crossed immunoelectrophoresis and electroimmunoassay with specific antibodies and by assay of esterase and protease activity of isolated fractions. Urokinase induced the formation of different components with plasminogen+plasmin antigenicity. At low concentrations of urokinase, a component with a KD value of 0.18 by gel filtration and post β1 mobility by gel electrophoresis was detected. The isolated component had no enzyme or plasminogen activity. In this plasma sample fibrinogen was not degraded for 10h, but when fibrin was formed, by addition of thrombin, fibrin was quickly lysed, and simultaneously a component with a KD value of 0 and α2 mobility appeared, which was probably plasmin in a complex with α2 macroglobulin. This complex showed both esterase and protease activity. After gel filtration with lysine buffer of the clotted and lysed plasma another two components were observed with about the same KD value by gel filtration as plasminogen (0.35), but β1 and γ mobilities by gel electrophoresis. They appeared to be modified plasminogen molecules, and possibly plasmin with γ mobility. Similar processes occurred without fibrin at higher urokinase concentrations. Here a relatively slow degradation of fibrinogen was correlated to the appearance of the plasmin–α2 macroglobulin complex. The fibrin surface appeared to catalyse the ultimate production of active plasmin with a subsequent preferential degradation of fibrin and the formation of a plasmin–α2 macroglobulin complex. The gel filtration and electrophoresis of the plasma protease inhibitors, α1 antitrypsin, inter-α-inhibitor, antithrombin III, and C1-esterase inhibitor indicated that any complex between plasmin and these inhibitors was completely dissociated. The β1 and post β1 components appear to lack correlates among components occurring in purified preparations of plasminogen and plasmin.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献