Affiliation:
1. Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan,
2. Department of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
Abstract
RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium Streptomyces griseus. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn catalytic triad is also present in RppA, as in plant chalcone synthases, as revealed by analyses of active-site mutants having amino acid replacements at Cys138, His270 and Asn303 of RppA. Site-directed mutagenesis of the amino acid residues that are likely to form the active-site cavity revealed that the aromatic ring of Tyr224 is essential for RppA to select malonyl-CoA as a starter substrate, since substitution of Tyr224 by amino acids other than Phe and Trp abolished the ability of RppA to accept malonyl-CoA as a starter, whereas the mutant enzymes Y224F and Y224W were capable of synthesizing THN via the malonyl-CoA-primed reaction. Of the site-directed mutants generated, A305I was found to produce only a triketide pyrone from hexanoyl-CoA as starter substrate, although wild-type RppA synthesizes tetraketide and triketide pyrones in the hexanoyl-CoA-primed reaction. The kinetic parameters of Ala305 mutants and identification of their products showed that the substitution of Ala305 by bulky amino acid residues restricted the number of elongations of the growing polyketide chain. Both Tyr224 (important for starter substrate selection) and Ala305 (important for intermediate elongation) were found to be conserved in three other RppAs from Streptomyces antibioticus and Streptomyces lividans.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献