Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis

Author:

FUNA Nobutaka1,OHNISHI Yasuo1,EBIZUKA Yutaka2,HORINOUCHI Sueharu1

Affiliation:

1. Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan,

2. Department of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium Streptomyces griseus. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn catalytic triad is also present in RppA, as in plant chalcone synthases, as revealed by analyses of active-site mutants having amino acid replacements at Cys138, His270 and Asn303 of RppA. Site-directed mutagenesis of the amino acid residues that are likely to form the active-site cavity revealed that the aromatic ring of Tyr224 is essential for RppA to select malonyl-CoA as a starter substrate, since substitution of Tyr224 by amino acids other than Phe and Trp abolished the ability of RppA to accept malonyl-CoA as a starter, whereas the mutant enzymes Y224F and Y224W were capable of synthesizing THN via the malonyl-CoA-primed reaction. Of the site-directed mutants generated, A305I was found to produce only a triketide pyrone from hexanoyl-CoA as starter substrate, although wild-type RppA synthesizes tetraketide and triketide pyrones in the hexanoyl-CoA-primed reaction. The kinetic parameters of Ala305 mutants and identification of their products showed that the substitution of Ala305 by bulky amino acid residues restricted the number of elongations of the growing polyketide chain. Both Tyr224 (important for starter substrate selection) and Ala305 (important for intermediate elongation) were found to be conserved in three other RppAs from Streptomyces antibioticus and Streptomyces lividans.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3