CaMKII/proteasome/cytosolic calcium/cathepsin B axis was present in tryspin activation induced by nicardipine

Author:

Xiao Juan1,Lin Houmin1,Liu Binggang12,Jin Junfei134ORCID

Affiliation:

1. Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, People’s Republic of China

2. Department of Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People’s Republic of China

3. China-U.S.A. Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi, People’s Republic of China

4. Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, Guangxi, People’s Republic of China

Abstract

Abstract Premature trypsinogen activation is the early event of acute pancreatitis. Therefore, the studies on the processes of trypsinogen activation induced by compounds are important to understand mechanism underly acute pancreatitis under various conditions. Calcium overload in the early stage of acute pancreatitis was previously found to cause intracellular trypsinogen activation; however, treatment of acute pancreatitis using calcium channel blockers did not produced consistent results. Proteasome activity that could be inhibited by some calcium channel blocker has recently been reported to affect the development of acute pancreatitis; however, the associated mechanism were not fully understood. Here, the roles of nicardipine were investigated in trypsinogen activation in pancreatic acinar cells. The results showed that nicardipine could increase cathepsin B activity that caused trypsinogen activation, but higher concentration of nicardipine or prolonged treatment had an opposite effect. The effects of short time treatment of nicardipine at low concentration were studied here. Proteasome inhibition was observed under nicardipine treatment that contributed to the up-regulation in cytosolic calcium. Increased cytosolic calcium from ER induced by nicardipine resulted in the release and activation of cathepsin B. Meanwhile, calcium chelator inhibited cathepsin B as well as trypsinogen activation. Consistently, proteasome activator protected acinar cells from injury induced by nicardipine. Moreover, proteasome inhibition caused by nicardipine depended on CaMKII. In conclusion, CaMKII down-regulation/proteasome inhibition/cytosolic calcium up-regulation/cathepsin B activation/trypsinogen activation axis was present in pancreatic acinar cells injury under nicardipine treatment.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3