Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion

Author:

Van der Vliet A1,Smith D2,O'Neill C A1,Kaur H3,Darley-Usmar V2,Cross C E1,Halliwell B13

Affiliation:

1. Pulmonary/Critical Care Medicine, University of California, Davis, UC Davis Medical Center, Sacramento, CA 95817, U.S.A.,

2. Biochemical Sciences, Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS, U.K.

3. INeurodegenerative Diseases Research Group, King's College, Manresa Road, London SW3 6LX, U.K.

Abstract

Endothelial cells and activated phagocytes produce both nitric oxide (.NO) and superoxide (O2.-), which react to form peroxynitrite. Peroxynitrite has been suggested to be directly cytotoxic and also to decompose into other toxic species. In order to understand the consequences of peroxynitrite generation in vivo, we examined its reaction with human blood plasma. Peroxynitrite decreased the total peroxyl-trapping capacity of plasma. In terms of specific antioxidants, addition of peroxynitrite to plasma leads to rapid oxidation of ascorbic acid, uric acid and plasma SH groups. The oxidation of plasma SH groups was enhanced in dialysed plasma and returned to control levels by the addition of physiological levels of bicarbonate. Evidence was found for formation of nitro-adducts to aromatic side chains in plasma proteins by peroxynitrite. Peroxynitrite also leads to depletion of ubiquinol and formation of traces of lipid hydroperoxides in plasma, although alpha-tocopherol levels were only slightly decreased. Peroxynitrite formation in human body fluids is likely to cause antioxidant depletion and oxidative damage.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3