Cellular characterization of a new irreversible inhibitor of S-adenosylmethionine decarboxylase and its use in determining the relative abilities of individual polyamines to sustain growth and viability of L1210 cells

Author:

Kramer D L1,Khomutov R M2,Bukin Y V3,Khomutov A R4,Porter C W1

Affiliation:

1. Grace Cancer Drug Center, Roswell Park Memorial Institute, 666 Elm Street, Buffalo, NY 14263, U.S.A.

2. lnstitute of Molecular Biology Academy of Sciences of the U.S.S.R. Moscow, U.S.S.R.

3. Institute for Carcinogenesis, All Union Cancer Research Center of U.S.S.R., Academy of Medical Sciences, Moscow, U.S.S.R.

4. Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.,

Abstract

S-(5'-Deoxy-5'-adenosyl)methylthioethylhydroxylamine (AMA) is an irreversible inhibitor of S-adenosylmethionine (AdoMet) decarboxylase, which is designed to bind covalently the pyruvate residue at the enzyme active site. In the present study the cellular effects of AMA were characterized for the first time in cultured L1210 leukaemia cells. At the approximate IC50 (concn. giving 50% inhibition; 100 microM), AMA decreased spermidine and spermine by more than 80% at 48 h while increasing putrescine more than 10-fold. As an indication of enzyme specificity, growth inhibition was fully prevented with exogenous spermidine. When compared with the irreversible inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine (DFMO), at similar growth-inhibitory concentrations, AMA was less cytotoxic, as determined by colony-formation efficiency. In combination with AMA, DFMO eliminated the rise in putrescine and decreased growth in an additive manner. The near-total depletion of intracellular polyamine pools achieved with the drug combination provided an opportunity to examine the relative abilities of individual polyamines to support growth and viability. Of the three exogenously supplied polyamines, only spermidine fully sustained cell growth and viability at control values during incubations totalling 120 h. By contrast, spermine supported growth at 23% of control and viability at 8%. Putrescine was similarly ineffective, supporting growth at 13% of control and viability at 7%. The data indicate that, in L1210 cells, spermidine is apparently the preferred polyamine in growth-related functions and is capable of fully supporting cell growth by itself. However, because spermine and putrescine can also support growth to some extent, maximum interference with growth and viability is best achieved by strategies which deplete all three polyamine pools.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3