Affiliation:
1. The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K.
Abstract
The myc family of proto-oncogenes is believed to be involved in the establishment of many types of human malignancy. The members of this family have been shown to function as transcription factors, and through a designated target sequence bring about continued cell-cycle progression, cellular immortalization and blockages to differentiation in many lineages. However, while much of the recent work focusing on the c-myc oncogene has provided some very important advances, it has also brought to light a large amount of conflicting data as to the mechanism of action of the gene product. In this regard, it has now been shown that c-myc is effective in transcriptional repression as well as transcriptional activation and, perhaps more paradoxically, that it has a role in programmed cell death (apoptosis) as well as in processes of cell-cycle progression. In addition, particular interest has surrounded the distinct roles of the two alternative translation products of the c-myc gene, c-Myc 1 and c-Myc 2. The intriguing observation that the ratio of c-Myc 1 to c-Myc 2 increases markedly upon cellular quiescence led to the discovery that the enforced expression of the two proteins individually showed that c-Myc 2 stimulates cell growth, whereas c-Myc 1 appears to be growth suppressing. Clearly, the disparities in the activities of c-Myc, together with the consistent occurrence of mutations of c-myc in human malignancies, means that, although reaching an understanding of the functions of the myc gene family might not be simple, it remains well worthy of pursuit.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
143 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献