Chemical cleavage of plasmid DNA by glutathione in the presence of Cu(II) ions. The Cu(II)-thiol system for DNA strand scission

Author:

Reed C J1,Douglas K T1

Affiliation:

1. Department of Pharmacy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Abstract

In the presence of Cu(II) ions, supercoiled DNA is cleaved in neutral solution by low concentrations of thiols. Supercoiled plasmid DNA is cleaved first to open circular DNA, which in turn produces linear DNA and eventually fragments. Cleavage is strongly temperature-dependent and is maximal at 0.10-0.25 M-NaCl concentration. In the presence of excess of either component of the Cu(II)-thiol pair, the extent of cleavage depended on the concentration of the limiting partner, and was easily detectable down to micromolar concentrations of limiting GSH. Scavengers of oxygen-derived species (such as hydrogen peroxide, superoxide radical ion and hydroxyl radical) indicated that the hydroxyl radical may be involved in the cleavage mechanism. DNA cleavage leads to some production of 2-thiobarbituric acid-reactive species and some of the cleavage sites, at least, had 5′-hydroxy and/or 3′-hydroxy groups. There was extensive base damage before cleavage. Studies with S1 nuclease indicated no gross sequence preference for Cu(II)-GSH cleavage of pSP64 plasmid DNA. The Cu(II)-thiol system did not appear to target special structural features in the DNA such as Z-DNA inserts, cruciform structures or left-handed (but non-Z) DNA. Cleavage might arise from a reagent generated either by the Cu(II)-thiol combination in free solution or by attack involving Cu(II) ions pre-bound to DNA. The attack of GSH plus Cu(II) ions on DNA may be a potential toxic lesion under physiological conditions unless special protective measures operate efficiently in the cell.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3