A model for measurement of lactate disappearance with isotopic tracers in the steady state

Author:

Stanley W C1,Lehman S L2

Affiliation:

1. Cardiovascular Research Institute, University of California, San Francisco, CA 94143, U.S.A.

2. Department of Physical Education and Bioengineering Group, University of California, Berkeley, CA 94720, U.S.A.

Abstract

1. The irreversible disappearance of lactate carbon from the body (RdL) is commonly calculated from data obtained with a continuous infusion of isotopically labelled lactate tracer. The tracer infusion rate divided by the steady-state lactate specific radioactivity in blood is taken to give the rate of lactate disappearance. 2. Measurement of lactate disappearance is complicated by the fact that it is reversibly converted into pyruvate as well as being irreversibly removed from the system. 3. We analysed a four-compartment model of lactate metabolism, representing blood lactate, tissue lactate and pyruvate carbon pools. 4. The standard method of calculating RdL from the lactate tracer infusion rate divided by the specific radioactivity of lactate was not validated. 5. We found that RdL can be calculated from the infusion rate and the pyruvate specific radioactivity, multiplied by the fraction of the total carbon flow out of pyruvate that goes to lactate. 6. Therefore, if almost all of the pyruvate carbon flows back to lactate, then RdL approaches the tracer infusion rate divided by the pyruvate specific radioactivity. On the other hand, if the rate of oxidation is large in relation to the rate of pyruvate conversion into lactate, than RdL is overestimated when calculated from the pyruvate specific radioactivity. 7. Calculation of RdL with the arterial lactate specific radioactivity results in an underestimate of the true RdL.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3