Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery

Author:

Quistorff B1,Johansen L1,Sahlin K2

Affiliation:

1. NMR Center, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark.

2. Deparment of Physiology 111, Karolinska Institute, Stockholm, Sweden.

Abstract

Changes in the metabolites phosphocreatine (PCr), Pi and ATP were quantified by 31P n.m.r. spectroscopy in the human calf muscle during isometric contraction and recovery under ischaemic conditions. Time resolution of the measurements was 10 s. During a 30-60 s ischaemic isometric contraction, PCr decreased linearly at a rate of 1.17%/s (relative to the resting value) at a contraction strength equivalent to 70% of the maximal voluntary contraction (MVC) and at a rate of 2.43%/s at 90% MVC. There was a corresponding increase in Pi but the concentration of ATP did not change. pH decreased linearly during contraction by 4.22 and 8.23 milli-pH units/s at 70 and 90% MVC respectively. During a subsequent 5 min interval of ischaemic recovery, PCr, Pi, ATP, phosphomonoesters and calculated free ADP, free AMP and pH retained the value they had attained by the end of contraction with no significant recovery. Thus it is concluded that anaerobic glycolysis and glycogenolysis is halted momentarily on termination of contraction and that PCr is not resynthesized during ischaemic recovery. This paradoxical arrest of glycolytic flow in spite of the very significantly elevated concentration of potent activators such as Pi and free AMP clearly indicates that parameters other than PCr, ATP, Pi, calculated pH, free ADP and free AMP regulate glycolysis and glycogenolysis of human skeletal muscle very efficiently under ischaemic conditions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3