Abstract
Pea membranes were incubated with UDP-[14C]xylose or UDP-[14C]arabinose and sequentially extracted with chloroform/methanol/water (10:10:3, by vol.) and sodium dodecyl sulphate (2%, w/v). An active epimerase in the membranes rapidly interconverted the two pentosyl nucleotides. Chromatographic analysis of the lipid extract revealed that both substrates gave rise to xylose- and arabinose-containing neutral lipids, xylolipid with properties similar to a polyisoprenol monophosphoryl derivative, and highly charged lipid-linked arabinosyl oligosaccharide. When UDP-[14C]pentose or the extracted lipid-linked [14C]arabinosyl oligosaccharide were used as substrates, their 14C was also incorporating into sodium dodecyl sulphate-soluble and -insoluble fractions as major end products. Polyacrylamide-gel electrophoresis of sodium dodecyl sulphate-soluble products indicated the formation of mobile components with Mr values between 40 000 and 200 000 (Sepharose CL-6B). The lipid-linked [14C]arabinosyl oligosaccharide possessed properties comparable with those of unsaturated polyisoprenyl pyrophosphoryl derivatives. It was hydrolysed by dilute acid to a charged product (apparent Mr 2300) that could be fractionated in alkali. It was degraded to shorter labelled oligosaccharides by slightly more concentrated acid and eventually to [14C]arabinose as the only labelled component. Susceptibility to acid hydrolysis, and methylation analysis, indicated that the oligosaccharide contained approximately seven sequential alpha-1,5-linked arabinofuranosyl units at the non-reducing end. Several acidic residues appear to be interposed between the terminal arabinosyl units and the charged lipid.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献