Dual roles of Lys57 at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme

Author:

Hsieh Ju-Yi1,Liu Jyung-Hurng2,Fang Yi-Wen1,Hung Hui-Chih12

Affiliation:

1. Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan

2. Institute of Bioinformatics, National Chung-Hsing University, Taichung 40227, Taiwan

Abstract

Human m-NAD(P)-ME [mitochondrial NAD(P)+-dependent ME (malic enzyme)] is a homotetramer, which is allosterically activated by the binding of fumarate. The fumarate-binding site is located at the dimer interface of the NAD(P)-ME. In the present study, we decipher the functional role of the residue Lys57, which resides at the fumarate-binding site and dimer interface, and thus may be involved in the allosteric regulation and subunit–subunit interaction of the enzyme. In the present study, Lys57 is replaced with alanine, cysteine, serine and arginine residues. Site-directed mutagenesis and kinetic analysis strongly suggest that Lys57 is important for the fumarate-induced activation and quaternary structural organization of the enzyme. Lys57 mutant enzymes demonstrate a reduction of Km and an elevation of kcat following induction by fumarate binding, and also display a much higher maximal activation threshold than WT (wild-type), indicating that these Lys57 mutant enzymes have lower affinity for the effector fumarate. Furthermore, mutation of Lys57 in m-NAD(P)-ME causes the enzyme to become less active and lose co-operativity. It also increased K0.5,malate and decreased kcat values, indicating that the catalytic power of these mutant enzymes was significantly impaired following mutation of Lys57. Analytical ultracentrifugation analysis demonstrates that the K57A, K57S and K57C mutant enzymes dissociate predominantly into dimers, with some monomers present, whereas the K57R mutant forms a mixture of dimers and tetramers, with a small amount of the enzyme in monomeric form. The dimeric form of these Lys57 mutants, however, cannot be reconstituted into tetramers with the addition of fumarate. Modelling structures of the Lys57 mutant enzymes show that the hydrogen bond network in the dimer interface where Lys57 resides may be reduced compared with WT. Although the fumarate-induced activation effects are partially maintained in these Lys57 mutant enzymes, the mutant enzymes cannot be reconstituted into tetramers through fumarate binding and cannot recover their full enzymatic activity. In the present study, we demonstrate that the Lys57 residue plays dual functional roles in the structural integrity of the allosteric site and in the subunit–subunit interaction at the dimer interface of human m-NAD(P)-ME.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference47 articles.

1. Chemical mechanism of malic enzyme as determined by isotope effects and alternate substrates;Cleland;Protein Pept. Lett.,2000

2. Structure and function of malic enzymes, a new class of oxidative decarboxylases;Chang;Biochemistry,2003

3. Regulation and physiological functions of malic enzymes;Frenkel;Curr. Top. Cell. Regul.,1975

4. Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases;Xu;Structure,1999

5. Characterization of cytosolic malic enzyme in human tumor cells;Loeber;FEBS Lett.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3